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1. Introduction

The molten carbonate fuel cell (MCFC) is one of the fuel cell
technologies that have proven efficiency and environmental perfor-
mance [1]. The performance and reliability of MCFC depend on its

operating temperature greatly. The temperature for stable operat-
ing of MCFC ranges from 873 K to 973 K, and the nominal operating
temperature is around 923 K. When the operating temperature is
below 873 K, the activity of molten salts degrades and the perfor-
mance of cells drops significantly. A higher operating temperature
can improve the working voltage and output performance of MCFC.
However, when the operating temperature is above 973 K, material
corrosion accelerates greatly, and electrolyte loss increases, which
increases the risk of short-circuit and shortens the stack lifespan
[2]. Thus, controlling the operating temperature within a specified
range and reducing temperature fluctuation are highly desirable.

Over the last decades, most of the researches in fuel cell control
field were model-based [3,4]. Some researchers have made great
progress on MCFC modeling to improve its performance. Most of the
existing mathematical models have been established on the inter-
nal mechanisms, ranging from a one dimensional non-isothermal
model to a three dimensional non-isothermal and non-isobaric
models [5–7], but it is too difficult to follow these models to design
a control system, especially in the design of the online control. To
meet the demands of developing valid control strategies, the data-
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driven approach has been developed to establish novel fuel cell
models [8–11]. In Ref. [11], a nonlinear Takagi–Sugeno (T–S) fuzzy
model of a MCFC stack is built with an identification method, and
identified fuzzy model can efficiently approximate the static and
dynamic behavior of a MCFC stack. The T–S fuzzy model can be
used to predict the variants responses on-line and make it possible
to design online controller of a MCFC stack.

This paper focuses on the application of predictive control

based on T–S fuzzy model to MCFC stack temperature. By the
optimization approach and the explicit use of a process model,
model predictive control can handle multivariable processes with
nonlinearities, non-minimum phase behavior, and can efficiently
deal with constraints. Model predictive control has been one
of the most attractive control techniques in the chemical and
petrochemical industries during the past decades. A model pre-
dictive controller has been developed in ref. [12] for a hybrid
PEMFC system with ultracapacitors as an auxiliary source of power.
Like any other model-based control, model predictive control
relies greatly on process models. An accurate process model is
required if the process is to be regulated tightly. In our case,
the T–S fuzzy model of MCFC stack is obtained by the identifi-
cation method from ref. [11] is the nonlinear predictive model.
In the presence of nonlinearities and constraints, usually a non-
convex optimization problem must be solved in each sampling
period in order to obtain the future control action. Different
algorithms such as sequential quadratic programming (SQP) or
branch-and-bound, can be used to avoid this problem. However,
SQP usually converges to local minimum, giving poor solutions.
In this paper, optimal control action in the discrete space is
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searched based on the principle of the branch-and-bound method
[13].

This paper is organized as follows. Section 2 mainly introduces
the structure of fuzzy predictive control system of MCFC. Sec-
tion 3 describes the optimization of control action. In Section 4,
MCFC control simulations are provided, followed by conclusions in
Section 5.

2. Structure of fuzzy predictive control system of MCFC

Fig. 1 shows the scheme of fuzzy predictive control system of
MCFC, which consists of a controlled plant, a predictive model and a
controller implemented by an optimizer. The MCFC dynamic phys-
ical model described in ref. [14] is built to mimic the real controlled
plant of a 10 kW MCFC stack. The stack temperature T◦ is controlled
variable. Flow rates of anode and cathode (Fa, Fc) are chosen as
manipulated variables. The current density J is considered to be a
disturbance.

In Fig. 1, y(k) is the current value of stack temperature; yref is
the reference curve of stack temperature; ŷ(k + 1) is the predicted
next value; U(k) is the manipulated variable. The T–S fuzzy model
predicts future stack temperature values using history stack tem-
perature values. Based on the difference between the next reference
values and the predicted stack temperature values, the optimal
controller can determine the next control signal for MCFC.

In this paper, we use the following form to facilitate modeling
and control designing:
T◦(k + 1) = f (Fa(k), Fc(k), J(k), T◦(k)) (1)

where f denotes the nonlinear relation. As a model of the stack to
be identified to simulate dynamically the variation of temperature
under various flow rates and disturbance.

Let u (u ∈ U ⊆ Rr) be input variable and y be output variable.
We define:

{uj(k)}nuj
0 = [uj(k), . . . , uj(k − nuj + 1)] · (j = 1, . . . r, )

{y(k)}ny
0 = [y(k), . . . , y(k − ny + 1)]with nuj and ny being the order

of uj and y, respectively, then multiple inputs and single output
(MISO) system can be denoted as follows,

y(k + 1) = f (x(k)) (2)

with x(k) = [{u1(k)}nu1
0 , . . . , {ur(k)}nur

0 , {y(k)}ny
0 ] = [xk1, . . . , xkn] is

the regression data vector consisting of input/output data at the
kth instant and before.

The T–S predictive model with linear consequents employed to
fit the MISO system in this paper is a collection of fuzzy rules, which

Fig. 1. T–S fuzzy model-based predictive control strategy for MCFC.
urces 183 (2008) 253–256

is in the form of “If . . . then . . .”. The ith rule of the output ŷi(k + 1)
is given by

Ri : If x(k) is Ai, then

ŷi(k + 1) = pi,0 + pi,1xk1 + · · · + pi,nxkn i = 1, . . . c (3)

where c is the number of rules, Ai = {Ai,1. . .Ai,n} is the set of mem-
bership functions associated to the ith rule and pi = [pi,0, pi,1,. . ., pi,n]
is the parameter vector of the ith submodel (rule).

The T–S fuzzy model can be obtained by the antecedent and con-
sequent identification. Antecedent identification is implemented
by fuzzy clustering based on the principle of Fuzzy C-Means (FCM)
algorithm. The consequent part of the fuzzy rule is identified by
using the Kalman filtering algorithm. The details of identification
can be found in ref. [11].

3. Optimization of control action

In model predictive control, a process dynamic model is used
to predict future outputs over a prescribed period [15]. A sequence
of future control actions is computed using this model by optimiz-
ing objective function. Based on T–S fuzzy model, the future process
outputs ŷ(k + i) for i = 1,. . ., P, are predicted over the prediction hori-
zon P. These values depend on the current process state, and on the
future control signals u(k + i) for i = 1,. . .M, where M ≤ P is the control
horizon. The control variable is manipulated only within the con-
trol horizon and remains constant afterwards, u(k + i) = u(k + M − 1)
for i = M,. . ., P − 1 .The optimal control action sequences (j = 1,. . .r),
will be solved to minimize the objective function

J =
P∑

i

qi[yref(k + i) − ŷ(k + i)]2 +
r∑

j=1

M∑

i=1

�ji[uj(k + i)

−uj(k + i − 1)]2 (4)

The first term accounts for minimizing the variance between the
process output and the reference, while the second term represents
a penalty on the control effort. Eq. (4) is used in combination with
input and output constraints,

uj min ≤ uj ≤ uj max, ymin ≤ y ≤ ymax (5)

To implement the receding horizon optimization control, only

the first control action in the sequence is applied, the horizons are
moved one sample period towards the future, and optimization
is repeated. In this optimization problem, control sequences are
optimized according to the principle of branch-and-bound method
which is a tree structure search technique and requires a discretiza-
tion of the control space. The process of optimization consists of
determining the discrete space of control action and searching the
optimal control sequence [13].

3.1. Determine the discrete space

In this subsection, the tree structure space of control sequence
is determined.

First, the error e(k) between the reference value and the actual
output of the MCFC system at the current sampling period, and the
error change rate ec(k) should be calculated,

e(k) = yref(k) − y(k) (6)

ec(k) = e(k) − e(k − 1) (7)

Second, e and ec are discretized into E and EC in their respective
fuzzy discourse domain, then the increment duj(k) of uj(k) (j = 1,. . .r)
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the validation of the proposed predictive control developed for the
temperature of MCFC stack based on T–S fuzzy model. As shown in
Section 3, a T–S fuzzy model is set up at first, and the model pre-
dictive control is designed based on the T–S fuzzy model. For the
identification of a MCFC T–S fuzzy model, the MCFC dynamic phys-
ical model described in ref. [14] is used to obtain the input/output
data if it were the “true” MCFC stack. The parameters of a 10 kW
MCFC stack are used in the simulation, and are given in Table 1.
In order to obtain available identification data, the input signals of
the MCFC dynamic physical model were uniformly random, includ-
ing the anode flow rate and the cathode flow rate. To obtain values
at integer time points, the fourth-order Runge–Kutta method was
used to find the numerical solution to the MCFC dynamic physi-
cal model in the simulation. The input/output data was collected
from the simulation, and then the fuzzy modeling algorithm in ref.
[11] was employed to identify the T–S fuzzy model. To validate the
T–S fuzzy model, it was used to perform dynamic simulation of the
MCFC stack. Under various gas flow rates (J = 1300 A m−2), compar-
ing the temperature values calculated by the T–S fuzzy model with
the temperature data obtained from the simulation of the MCFC
dynamic physical model, we obtained the results as in Fig. 3. From
F. Yang et al. / Journal of Po

Fig. 2. The tree structure discrete space of all the control variables.

is inferred according to the following analytical fuzzy reasoning
formula,

duj(k) = ˇ[˛jE + (1 − ˛j)EC] (8)

where ˇ and ˛j are the undetermined coefficients. The consecutive
space of uj(k), centered on uj(k − 1), is given by:

B = (uj(k − 1) − abs(duj(k), uj(k − 1) + abs(duj(k)) (9)

Third, the consecutive space of uj(k) is discredized into the dis-
crete one. In the same way, based on each discrete search point
of uj(k + i − 1), discrete search space of uj(k + i) can be obtained in
the control horizon (1 ≤ i ≤ M − 1). The control sequence does not
branch anymore during the sampling period beyond the control
horizon (M ≤ i ≤ P − 1).

As a result, the discrete space of control sequence can be
obtained. Fig. 2 illustrates the tree structure discrete space of all
the control variables with predictive horizon P and control horizon
M. In this figure, ut

j
(k + i) (t = 1, . . . , nk+i

j
) denotes the tth discrete

search point in discrete space of uj at the k + ith sample instant. This
part of the algorithm embodies the branch idea in the branch-and-
bound method.

3.2. Search optimal control sequences

In the tree structure discrete space of control sequences, the
optimal control sequences which minimize the objective function
should be searched. At first, the greedy algorithm is employed to
find a ‘good’ solution in order to set the initial upper boundary

for the objective function (Eq. (4)). Given the selected uj(k + i − 1)
(j = 1, . . ., r), the performance index as follows is computed for all
discrete control actions ut

j
(k + i) (t = 1, . . . , nk+i

j
) (j = 1,. . ., r) of the

k + ith (i = 0,. . ., P − 1) level in Fig. 2:

Jt(k + i) = qi[yref(k + i) − ŷt(k + i)] +
r∑

j=1

�ji[(u
t
j (k + i)

−uj(k + i − 1))]2 (10)

Then J(k + i) = min
t

{Jt(k + i)} and corresponding uj(k + i) are

found. Jupper =
∑P−1

i=0 J(k + i) is the initial upper boundary of
the objective function, and the control sequence composed of
uj(k + i) (j = 1,. . .r, i = 0,. . ., P − 1) is the ‘good’ solution men-
tioned above. Afterwards, the optimal control sequence should
be searched according to the method used in ref. [16]. The
first element uj(k) (j = 1,. . ., r) of the optimal sequence is
applied to the plant, and the obtained sample output y(k + i)
is used to construct a new input/output data vector, x(k + 1) =
urces 183 (2008) 253–256 255

Table 1
Parameters of the MCFC stack

Parameter Unit Value

Number of cells 25
Cell active area m2 0.4
Channel height of anode m 1.2 × 10−3

Channel height of cathode m 2 × 10−3

Density of separator kg m−3 7900
Inlet temperature of anode K 873
Inlet temperature of cathode K 823
Inlet H2 of anode Mole fraction 0.64
Inlet CO2 of anode Mole fraction 0.2
Inlet H2O of anode Mole fraction 0.16
Inlet CO2 of cathode Mole fraction 0.3
Inlet N2 of cathode Mole fraction 0.553
Inlet O2 of cathode Mole fraction 0.147

[{u1(k + 1)}nu1
1 , . . . , {y(k + 1)}ny

0 ] which will be used in the next
sample period.

4. Simulation

In this section, we present numerical simulations to illustrate
Fig. 3. Identification results under variable flow rates.
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Fig. 4. Responses of two control methods.
Fig. 5. Anti-disturbance result of the predictive control.

Fig. 3, we can see the obtained T–S fuzzy model can approximate
the dynamic behavior of the MCFC dynamic physical model with
good accuracy.

Next demonstration is the predictive control with the fuzzy
model. The stack temperature is required to be kept constant
(in general 923 K). The control simulations are performed for all
the schemes with the following tuning parameters of predictive
controller, prediction horizon P = 15; control horizon M = 5; con-
trolled variables weights qi = 1.56; manipulated variables weights
�1,i = 0.15, �2,i = 0.1. A nonlinear PID controller is also used in the sim-
ulation. We use an improved nonlinear PID controller to control the
stack. In the simulation, the parameters of PID are chosen as (see
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[

[

[
[
[
[
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[17] for details) Kc = 0.8Km, Ki = 0.3Tm, Kd = 0.1Tm where Km and Tm

are the proportion coefficient and the oscillation cycle of the step
response of the system at the critical stability points applied with a
proportional control. To adapt nonlinear dynamic, PID parameters
above are tuned online as in [18]. We get the tracking curve of the
controlled system shown in Fig. 4. The variant curve of the operat-
ing temperature when not controlled is labeled ‘without control’ in
Fig. 4 and is stable at about 927 K. From Fig. 4, we can see the MCFC
stack is controlled by the nonlinear predictive control algorithm
based on T–S fuzzy model, which adjusts the operating tempera-
ture to the set value (923 K), minimizes the temperature fluctuation
and obtains satisfactory control effectiveness.

The anti-disturbance result is given in Fig. 5. And the simulation
result is obtained at the condition with the current density chang-
ing (at time 8000 s, the current density stepping from 1300 A m−2

to 1100 A m−2). The predictive controller is used to adjust the stack
temperature to its steady value (923 K). From the simulation result
we can find that the predictive control based on T–S fuzzy model is
disturbance robust.

5. Conclusions

The operating temperature of the stack is an important con-
trolled variable in the MCFC system. However, the existing
mechanism model is too complicated to meet the design require-
ments of the control system. In this paper, a nonlinear predictive
control algorithm based on the T–S fuzzy model is proposed. The
validity of fuzzy predictive model of MCFC stack and the good per-
formance of the nonlinear predictive controller are illustrated by
simulations.

It is concluded that it is feasible to set up the model of the com-
plex nonlinear MCFC stack system based on T–S fuzzy model and it
can be used to predict the temperature responses online. The non-
linear predictive controller designed is efficient. It can control the
stack temperatures to change smoothly to the ideal stabilization

value, and shows robustness.
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